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The mathematical formulation of a coupled optimization problem, which includes several optimal problems which are inter- 
related via the optimization parameters and functions of state, is analysed. The conditions for the existence of a solution are 
formulated and a technique for reducing the problem, to a sequence of optimal problems with unknown functions in the optimality 
and bounding criteria is described. A special minimizing sequence is constructed and its convergence conditions are derived. An 
example is given to demonstrate the method. © 1999 Elsevier Science Ltd. All rights reserved. 

The need to solve various inter-related problems arises, for example, when investigating the multi- 
transition thermomechanical processing of metals or the optimal design of structures to take account 
of their manufacturing technology. These problems are solved separately, without reference to one 
another. For example, there have been a large number of investigations on optimizing the distribution 
of the mechanical parameters of anisotropy or inhomogeneity of a material in the volume of a structure 
to give it minimum weight or maximum strength ([1-3], etc.), but they do not consider the choice of 
manufacturing technology which gives optimum usable structural properties. Original methods for the 
optimal control of temperature fields, stresses, deformations and displacements in the technology of 
material processing have been described in a number of papers ([4--6] among others), but how to choose 
optimal distributions on the basis of the conditions under which the structure is used is not considered. 
It is only possible to justify such a choice by the simultaneous solution of problems of optimal design 
of the structure and optimal control of its manufacturing technology. 

There have been a small number of investigations in which specific manufacturing processes are 
analysed in this way (the reinforcement of structures of composite materials, for example). However, 
this does not enable different technological processes to be compared. A broader optimization is made 
more difficult by the lack of a sufficiently general technique for solving coupled optimization problems 
and by the complexity of the boundary-value problem of thermal elastoplasticity or creep, which describes 
the behaviour of a material during its manufacture. 

Note that thermomechanical treatment is usually associated with large temperature and stress 
gradients and involves complex loading conditions and large deformations. The corresponding problems 
of thermal elastoplasticity are consequently time-consuming. The use of high-speed computers the 
development of efficient numerical solutions and the construction of a modern theory of constitutive 
relations ([7-9], etc.) has reduced the computer time needed considerably, making it feasible to attempt 
a statement and solution of coupled optimization problems. 

1. A N  E X A M P L E  O F  T H E  S T A T E M E N T  O F  
A C O U P L E D  O P T I M I Z A T I O N  P R O B L E M  

We will consider the formulation of the coupled optimization problem using the example of the 
optimization of the electrical forging of parts of axisymmetric shape. This involves two successive stages 
(Fig. 1): the piece is heated by passing an electric current through it and then immediately deformed 
by heating to obtain a piece of the required shape. 

It has been found experimentally that the maximum ductility of the metal of a blank depends on many 
parameters, the main ones being the temperature 0, the intensity of the deformation rates Hi  and the 
stressed state indicator and the stressed state indicator Crc/T (or c is the average stress and T is the shear 
stress intensity). The problem is to choose the process parameters (the current distribution function 
over time, the heating time, the punch pressure, etc.) for which maximum use is made of the ductility 
of the metal. It is better to split the problem into two inter-related optimal problems: first, to optimize 
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Fig. 1. 

the heating of the blank to obtain a near-optimal temperature distribution and then, by controlling the 
pressure on the punch with the known heating temperature of the blank, to find an approximation to 
the optimum stress-strain state relative to some norm or other. The reason why these problems are so 
difficult is that they require the repeated solution of non-linear and time-dependent problems of 
electrothermal conduction and thermal elastoplasticity. 

Using the technique described in [9, 10], we have constructed a mathematical model of the process 
which takes into account the non-linear distribution of the heat sources when a current is passed through 
the blank, complex loading and large plastic deformations of the metal. The agreement between the 
calculated and experimental results is good. We have established that the main factors associated with 
the failure of the metal for a given process are the temperature to which the blank is heated and the 
deformation rate. These factors can be monitored using the current strength function Io(t), t • [.0, tl], 
where q is the time during which the blank is heated, and the change of pressure on the punch P(t), t 
• [tx, t2], where (t2 - tl) is the time during which the blank is deformed. 

We thus obtain the following statement of a biconnected optimization problem: it is required to find 
controls from the class of piecewise-continuous functions hi( .  ) = I0(- ) • pc[0, tl] and h2(. ) = P( .  ) 
• pc[q, t2] which give a minimum value to the following functions 

L 

Ji0(hl) = ~ [O(tl,rl,z;hl)--O(z;HZ,cc IT)12dz --> inf 
0 hi 

(1.1) 

J2o(h2) = I max (H~(t,r,z;h2))-'H,z(O,~clT) dt--->inf (1.2) 

with constraints in the form of equations 

Fil(t,r,Z, hl,Ul,Pl)=O, t•[0,t l];  r,z •'~[ (1.3) 

F2(t,r,z,h,z,u2,ul(tl,r,z),P 2) = 0, t • [tl,t2]; r,z •'~t9 (1.4) 

and inequalities 

0<~hl(t)<~l, t •[0, t l ]  (1.5) 

It is assumed here that 

0 <- h2(t)<- P, t •[ t l , t  2] (1.6) 

l'Ol(HZ,ffc IT),zE[O,I], ~ I I 
O(Z) = [02 = 50°C, z • [l, L] = ~ ~ O(tl' fi' z)dz 

and the functions 01(//~, ac/T) and HZ(§, ~c/T) for which the two optimal problems are inter-connected 
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are chose from experimental curves of ductility for the given material [11]. The temperature §1 
corresponds to the maximum ductility of the metal for fixed values H z and ~c/T. The quantities ul and 
u2 are taken as vector-functions of the state of the body, and P1 and P2 are taken as functions which 
specify external actions on the body during heating and deformation, respectively, ~ (i = 1, 2) are the 
regions that the metal occupies during heating and deformation, I is the limit on the current P strength 
and is the limit of the rate of change of pressure on the punch. 

Operator equations (1.3) and (1.4) are here the equations of time-dependent boundary-value problems 
of electrothermal conduction and thermal elastoplasticity. Solving these problems is computationally 
intensive. We will therefore first find a qualitative solution of optimal problems (1.1), (1.3), (1.5) and 
(1.2), (1.4), (1.6) with certain additional assumptions. Since the diameter of the body is much less than 
its length, with some confidence we can neglect the change of temperature over the radius. Then the 
constraint in the form of an equality for electrical heating optimization is the heat conduction equation 
with an internal source 

30 ,320 
cT-~=A,~z2+q(z,t), z•[0,L], t~[0,t l] (1.7) 

q(z,t)={~!(t) R, O<~z <<-I 
l~z<~L 

where R is the resistance of the blank and c, Z. and y are the heat capacity, thermal conductivity and 
specific gravity of the material of the blank. 

Note that the model used here is of a conductor in a conducting matrix. It is assumed that there is 
a current through the matrix in the section z • [l, L] and through the conductor in the section z e [0,/]. 
The boundary conditions of the heat conduction problem are 

O(z,0) = O 0, z ~ [0,L] (1.8) 

3O(z,t)/3zl~=o = 30(z,t)/aZI~=L =0, t • [0,tl] 

If the function §l(HZu, ¢~c/T) is assumed given, problem (1.1), (1.5), (1.7), (1.8) can be solved as follows. 
We define the operator B: L2(0, tl) ~ L2(0, L) by (BhE)(z) = 0(z, h)  - 00. A solution of boundary- 

value problem (1.7), (1.8) is found using Fourier's method, which gives 

O(z,t) = Oo + --£~ h~('c)d'~+ (1.9) 

+-'2 #sin{ #lcos/k-#li h?(,)ex  i2(, 
n , = l  r k L )  k LJo c7 L )  -- J J 

It has been shown [12] that series (1.9) converges and its sum 0 is a unique solution of problem (1.7), 
(1.8) almost everywhere (since the function q is discontinuous). 

Functional (1.1) can then be rewritten in the form 

Jlo(h,) = ~ ((Bh?)(z)- g(z))2 dz = Bh 2 - gl g(z) = 0o (1.10) 
0 

It follows from (1.10) that Jlo(hl) is Fr6chet differentiable over the whole space L2(0, tl), that 
is 

Vh •/_~(0,t l )  (Jlo(ht),h) = 2(B*(Bhi 2 -g),h) 

where the operator B*: L2(0, L) ---> L2(0 , t2) is conjugate to B. 
It has been shown [12] that if hi • L2(0, tl), then Jlo(hl) has no minimum on L2(0, tl). 
If hi • L2(0, tl), where Jlo(hl) is a bounded closed and convex set in L2(0, tl), then B(HI) is a convex 

compactum. Thus there is a function h T • / / 1  which minimizes Jlo on H1. However, in that case the 
solution might not be unique. But if H1 is chosen to be a convex closed set in the space Him of step 
functions 

I l l (X  ) = a i ,  i = 1 . . . . .  m ;  ' t i _  1 ~ T, ~ "~i; 0 = "CO < "~1 < "'" < T'm = t[ 
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for a fixed partition of the segment [0, t l] ,  then the operator B: Hlm --> L 2 ( 0  , L) is injective, and so the 
solution is unique. 

Since we have the expression for the gradient ~0(hl) in explicit form, we can obtain a numerical solution 
of the original optimal problem, using the gradient projection method for example. 

However, the only function in the class of step functions which gives a simple realization of an actual 
technological process is discontinuous and periodic. For this reason we shall seek a solution of problem 
(1.1), (1.3), (1.5) in the above form. It is then easy to reduce the optimization (with no additional 
assumptions) to a problem of non-linear programming, with the current intensity during heating and 
the ratio of the heating time to the pause time as the optimization parameters. Figure 2 shows the 
solution for one of the blanks. The discontinuous heating regime (curve 2 in the upper right of Fig. 2) 
clearly gives a better temperature distribution over the surface of the blank (curve 2 on the left of Fig. 
2) than the existing heating regime (curve 1 on the left of Fig. 2). 

We will now consider the qualitative solution of the second optimal problem (1.2), (1.4), (1.6). On 
the basis of prior experimental and theoretical research we will make the following assumptions. We 
consider deformation of only the forged part of the blank l and assume the process to be isothermal. 
We take the model of an incompressible linearly viscous medium as a model of the material. Then 
constraints (1.4) can be written in the form of the differential relations 

O(t) = I.t(~))~(t), ~(t) = h2(t); t • [tl,t2] (1.11) 

with the corresponding boundary conditions 

o(t I ) = e(t I ) = e(t I ) = 0, £(t2) = ~ (1 .12)  

where la(0) is the coefficient of viscosity of the material, which depends on the temperature to which 
the blank is heated and ~: is the given longitudinal deformation. Note that, due to the incompressibility 
of the material and the axial symmetry of the blank, the intensity of the deformation rates Hi  is equal 
to the longitudinal deformation rate ~. Then the functional Jz0(h2) can be written in the simplified form 

t2 

J20(h2) = S (~(t)-'~) 2at 
tl 

In addition, we assume that/~(t) = ~(t), where ~ is the longitudinal stress. 
Choosing the phase variablex( • ) = ~(. ) • KCI[t l ,  t2], we apply Pontryagin's maximum principle to 

the given optimal control problem. The Lagrange function has the form 

t2 

~. = S [~,0(x(t  ) _ ~)2 + ~,lX(t) + p(t)(Jc(t) - Jl-lh2(t))]dt - ~,1"~ 
tl 

where ~.1, ~2 are Lagrange multipliers, p( - ) is the adjoint function, and t 2 is a variable quantity. 
Then the required optimality conditions have the form 

'V 800 

q o n n 

Z ~ f, s 

0 tO 2o 30 z , ~  

Fig. 2. 
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ib(t) = L02(x(t) - ~) + kl, p(t2) = 0 (1.13) 

max (p(t)~t-lh2(t)) = p(t)p.-l~,  Z0(x(t2)- ~)2 + ~lx(t2 ) = 0 
h2(t)~P 

It follows from the optimality condition for h2 that 

/~(t) = Psign(p(t)), p(t) ~: 0 (1.14) 

It can be shown that X0 ~ 0. Then we shall take 2% = 1. Investigating the funetionp( • ) using conditions 
(1.13) and differential relations (1.11), we can show thatp(  • ) is a continuous function, withp(t:)  > 0. 

It follows from (1.11), (1.12) and (1.14) that 

/~ (t) = P, ~:(t) = Ix -1P(t - t 1 ), t E [t I , "r], x = min {t E [t 1, t 2 ] / p(t) ~ 0} 

We will consider the following possibilities. 
1. Let x = t2. Thenx(t2) = B-:/3(t - tl); ~2 = ~12P ~//3. 
We obtain the solution 

/~(t)= P; Sc(t)=lx-I'p(t-tl), tE [t:,t'2] (1.15) 

which holds when j3 ~ ~21L/(2~:)" _ _ 
2. Let X < t2. Thenp(x)  = 0. Hence x = eB/P 
It can be shown thatp(t)  = 0, t E [% t2]. Then for/~ > e2B/(2~ ) we have the optimal solution 

{P, t~[tl,X) I_lLt-lp(t-tl), t~-[tl,'O 
0, te['~,f2]' "r(t)=L~: , tE[X,~'2] 

= 

(1.16) 

The fact that the admissible extrema (1.15) and (1.16) are unique means that the solution of problem 
(1.2), (1.4), (1.6) in the given formulation is unique. Also it can be shown that the extremum for the 
functional J20 given by solutions (1.15) and (1.16) is global. 

Figure 3 shows solution (1.16). We see that the control h2 must have a witch at a certain point x, 
which depends on the temperature to which the blank is heated and the mechanical properties of its 
material (Fig. 3a). In this case the intensity of the deformation rates is closest to the given value 
throughout the entire deformation process (Fig. 3b), thereby reducing the possibility of metal failure. 

Note that ~ e  first and second problems of optimal control here are coupled. The first problem contains 
the quantity 01, which depends on the solution of the second problem Hi(t),  and the solution of the 
second depends on the quantity 0, which is found from the solution of the first. Thus these problems 
must be solved by iteration. We found th_at the convergence of the iteration depends to a large extent 
on the form of the coupling functions 0i(Hu ~) and z Hu(0 ). If these are smooth enough, convergence 
is achieved after 3-4 iterations. 

The coupled problem of [13] was solved to obtain the optimal heating and deformation regimes 
whereby, as Fig. 4 shows, much greater use is made of the plastic properties of the material and 
exhaustion of the ductility reserve q' [11], which was taken as a criterion of failure of the metal (~F = 
1), is reduced. In Fig. 4 curve 1 corresponds to the build-up of damage in the metal under the existing 
heating and deformation regimes, curve 2 corresponds to optimal deformation, curve 3 corresponds 
to optimal heating, and curve 4 corresponds to the two together. Under optimal heating and deformation 
conditions, exhaustion of the ductility reserve of the metal can be reduced by more than 20%. This was 
confirmed by experimental data obtained under real conditions. Nomograms of rational forging 
programmes constructed on the basis of  these results for a broad class of blanks of typical sizes have 
been introduced in a number if industrial enterprises [14]. 

2. S T A T E M E N T  OF T H E  B I - O P T I M I Z A T I O N  P R O B L E M  
IN T H E  G E N E R A L  CASE 

Suppose a given body occupies the bounded three-dimensional region f ~  with boundary F~ in the 
time interval [to, tl], and the region ~ with boundary F~ in the time interval [tl, t2]. It will be assumed 
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that ~ 1  = ~I ' ,  where ~ = f ~  w r~ (here and below, unless otherwise stated, n = 1, 2). We introduce 
the vector functions of the state of the body ul( •, • ) e w°2'l([to, tl] × f)]) and u2( •, • ) e w°l([tl, t2] x 
~ ) ,  where w°2"l([tn_l, tn] x ~ t )  are Sobolev spaces. In the problems considered here, these can be taken 
as functions of the displacement, strain, stress, temperature, etc. which characterize the state of the 
deformed body at a given point and a given time. Let hn( •, • ) e pc([tn_b tn] x ~n t) denote the vector 
functions of the optimization parameters in the respective spaces of the piecewise-continuous functions. 
We shall consider functionals of the form 

J l i (h l  ) = Jli (h i ,  u l  (hi),  tPl (h2,  u2) ) ,  i = 0 ..... m 1 

J 2 i ( h 2 )  = J2 i (h2 ,  u 2 ( h 2 ) , t p 2 ( h  1, t l , . ) )  ), i = 0 ..... m 2 

where tO1, ~2 are the continuous operators due to which the two optimal problems are inter-connected. 
The operator ~02 allows for the entire history of deformation in the previous state (deformation 

hardening of the material, residual stresses, etc.) and tO1 takes into account the influence of the functions 
of state and optimization parameters of the second stage of deformation on the first. The dependence 
on ~1 in the problem as formulated is unconventional, since at any instant of time the solution depends 
on that at the next instant, so that the "actual" value depends not only on the "past", but also on the 
"future", which has never happened before. This is the main novelty of the statement of the bi- 
optimization problem and it is this which makes it difficult to solve. Furthermore, ul(hl) and u2(h2)  a r e  
usually given in terms of a system of non-linear differential or integro-differential equations rather than 
in explicit form. 

Let the relation between the functions of state and optimization parameters be given by a system of 
equations which can be written in operator form as follows 

Fl(t ,X,  h l , U l , ~ l ( h a , u a ) , P l ) = 0 ,  t E[to,tl], X E-~f 

F 2 (t, x, h a, u a, tp 2 (Ul (tl, ")), P2) = 0, t e It I , t 2 ], x E ~ 

where the operators Fn describe the behaviour of the body during deformation, the functions Pn( ", • ) 
L2([tn_l, tn] x ~n t) set the loads on the body during deformation and belong to the Lebesgue space 

L 2 and x is the space coordinate vector. In the case under consideration, the above system of equations 
are the equations of the boundary-value problem of thermal elastoplasticity. 

Deformation of a body is always subject to technological and design constraints. These can be written 
in the form of the inequalities 

fnj(t,x, hn,un,Jni) <- O, t~[tn_l,tn], x ~  n, i = l  ..... ra n" j = l  ..... k n 

where fnj are given continuous functions. If the optimality criteria of each stage of deformation are 
taken to be the conditions for the minimization of functionals J10 and J20, resp~tively, then the 
bi-optimization problem can be stated as follows: it is required to find functions h i ,  h E such that 

hz 

I 
I 

I 

£.f 

a.Y 
ft-t~Jlftz-t ~) 

Fig. 3. Fig. 4. 
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J.o(h.) ---> inf, n = 1,2 

with equation constraints 

F.(t,x,h.,u.,q)n.P.)=0, t~[t ._l , tn],  x ¢-~f, 

and inequality constraints 

- - t  fnj(t ,x,  hn,un,Jni)  <~ O, t ~[tn_l,tn], X ~ n ;  i = l ..... m,,; j = l ..... k .  

(2.1) 

(2.2) 

(2.3) 

This is not a two-criteria problem in the ordinary sense. The regions of definition of functionals (2.1) 
are separate in time, and so there is no point in introducing the concept of Pareto optimization [15]. 
In this case we consider two optimization parameters and functions of state of one problem on the 
solution of the other. A new approach to optimization of this type is this required. 

We will consider the conditions for a solution of problem (2.1)-(2.3) to exist. To do so, we introduce 
the auxiliary sets UI and U2 in which constraints (2.2) are satisfied, and sets Ha and H2 in which constraints 
(2.3) are satisfied, respectively. We have the following theorem. 

Theorem. Suppose u n e Un exist such that the sets Hn are non-empty, bounded and weakly closed; 
let the conditions of continuity of the mapping HI x Ut ---> R given by the functionals Jli ( i ,  0 . . . . .  ml) ,  
Vh2 ~ HE, VU2 E U2, and the mapping H2 x U2 ~ R, given by the functionals J~. (i = 0 . . . . .  m2), V Ul( t l ,  - ) 

U1, hold; let the functionals Jm0 be convex with respect to h n and (Pn, V un ~ Un, respectively, and let 
the functions q)n, fnj (J" = 1 . . . . .  kn)  be continuous with respect to each argument. 

Then, (1) the solution of problem (2.1)-(2.3) h~ exists; (2) sequences h~ ) (k = 1, 2 . . . .  ), satisfying 
conditions 

Jn0(hn) = lim Jn0(h(n k)) = inf Jn0(hn) , h n ~ H. 

can be found and II h .  - f ' .  o. 

Remarks. 1. The condition of quasi-regularity of the functionals J,0 (convexity with respect to hn, tO,), can be 
replaced by their weak semi-continuity with respect to h, and tOn [16]. 

2. We will not give the proof of the theorem here, but it is easily obtained from the theorems and proofs given 
in [16, 17]. 

The theorem suggests a general method of solving coupled optimization problems, in which each is 
split into a number of individual optimal problems which are solved in succession. A special iterative 
procedure can be constructed for this purpose. We begin by considering problem (2.1)-(2.3) (n = 2) 
for a given function ~°)(tt, .) (usually ~°)(t 1, .) = 0). This leads to the classical statement of the given 
optimization. By using a known optirrization method to solve it, we find ~0), and then use F2 to find 
aO)~ (0). (We recall that a(~°~t~°) denotes the solution of the boundary-value elastoplasticity problem (2.2) 
(n =~2) for a certain distribution of the optimization parameters la(2°)). Further, we solve optimization 
problem (2.1)--(2.3 ) ((n = 1) ) with fixed functions a ~0) and h(11) and find a(11). We then refine the function 
at11)(t 1, .) and again solve problem (2.1)-(2.3) ((n = 2)). The iteration is continued until the convergence 
conditions are satisfied. 

This method of solving coupled problems is not unique. For example, one could construct special or 
generalized functionals which depend on all the optimization parameters, as in the theory of the solution 
of multicriterion problems [15]. However the possibility of using separate deformation stages, which 
is a promising feature of the technique. In some cases, moreover, the coupled optimization problem 
is made much simpler to solve because of the considerable simplification of the separate optimal 
problems [18]. 
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